A Metaheuristic Optimization Algorithm for the Synchronization of Chaotic Mobile Robots
نویسنده
چکیده
We provide a scheme for the synchronization of two chaotic mobile robots when a mismatch between the parameter values of the systems to be synchronized is present. We have shown how meta-heuristic optimization can be used to adapt the parameters in two coupled systems such that the two systems are synchronized, although their behavior is chaotic and they have started with different initial conditions and parameter settings. The controlled system synchronizes its dynamics with the control signal in the periodic as well as chaotic regimes. The method can be seen also as another way of controlling the chaotic behavior of a coupled system. In the case of coupled chaotic systems, under the interaction between them, their chaotic dynamics can be cooperatively self-organized. A synergistic approach to meta-heuristic optimization search algorithm is developed. To avoid being trapped into local optimum and to enrich the searching behavior, chaotic dynamics is incorporated into the proposed search algorithm. A chaotic Levy flight is firstly incorporated in the proposed search algorithm for efficiently generating new solutions. And secondly, chaotic sequence and a psychology factor of emotion are introduced for move acceptance in the search algorithm. We illustrate the application of the algorithm by estimating the complete parameter vector of a chaotic mobile robot.
منابع مشابه
Synchronization of a Heart Delay Model with Using CPSO Algorithm in Presence of Unknown Parameters
Heart chaotic system and the ability of particle swarm optimization (PSO) method motivated us to benefit the method of chaotic particle swarm optimization (CPSO) to synchronize the heart three-oscillator model. It can be a suitable algorithm for strengthening the controller in presence of unknown parameters. In this paper we apply adaptive control (AC) on heart delay model, also examine the sys...
متن کاملFinite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems
Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملFormation Control and Path Planning of Two Robots for Tracking a Moving Target
This paper addresses the dynamic path planning for two mobile robots in unknownenvironment with obstacle avoidance and moving target tracking. These robots must form atriangle with moving target. The algorithm is composed of two parts. The first part of thealgorithm used for formation planning of the robots and a moving target. It generates thedesired position for the robots for the next step. ...
متن کاملModified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption
In this study, we propose a secure communication scheme based on the synchronization of two identical fractional-order chaotic systems. The fractional-order derivative is in Caputo sense, and for synchronization, we use a robust sliding-mode control scheme. The designed sliding surface is taken simply due to using special technic for fractional-order systems. Also, unlike most manuscripts, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013